Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11250, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660467

RESUMEN

The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.

2.
Am Nat ; 201(5): 619-638, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130236

RESUMEN

AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.


Asunto(s)
Especiación Genética , Aislamiento Reproductivo , Reproducción , Adaptación Fisiológica , Aclimatación , Ecología
3.
Syst Biol ; 72(1): 78-91, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36546866

RESUMEN

The skuas and jaegers (Stercorariidae) are an enigmatic family of seven seabird species that breed at Arctic and Antarctic latitudes. The phylogenetic relationships amongst the species have been controversial, with one of the biggest enigmas involving the Pomarine Jaeger (Stercorarius pomarinus), which has been proposed to represent a hybrid species originating from the merging of distant lineages within the complex. We inferred a phylogeny for the family using multispecies coalescent methods with whole-genome sequencing for all seven species of Stercorariidae, and document an evolutionary history rich in introgression. We uncover evidence for mitochondrial capture and nuclear introgression between S. pomarinus and Stercorarius skua, providing a potential avenue for adaptive introgression. One candidate for adaptive introgression is the MC1R plumage gene which appears to have introgressed from one of the large skuas into S. pomarinus, where it now forms the basis of the dark-morph color polymorphism of that species. We further highlight a complex biogeographical history of interchange between the Arctic and Antarctic, with unexpected close ancestry between S. skua of the northern hemisphere and Stercorarius antarcticus of the southern hemisphere. These results highlight the dynamic history of introgression during pelagic seabird radiation. [Incomplete lineage sorting; introgression; mitochondrial capture; phylogenomics; skua; species tree; stercorariidae; whole-genome resequencing.].


Asunto(s)
Charadriiformes , Animales , Filogenia , Charadriiformes/genética , Evolución Biológica , Polimorfismo Genético , Genoma
4.
Science ; 378(6625): 1214-1218, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520892

RESUMEN

After decades of debate, biologists today largely agree that most speciation events require an allopatric phase (that is, geographic separation), but the role of adaptive ecological divergence during this critical period is still unknown. Here, we show that relatively few allopatric pairs of birds, mammals, or amphibians exhibit trait differences consistent with models of divergent adaptation in each of many ecologically relevant traits. By fitting new evolutionary models to numerous sets of sister-pair trait differences, we find that speciating and recently speciated allopatric taxa seem to overwhelmingly evolve under similar rather than divergent macro-selective pressures. This contradicts the classical view of divergent adaptation as a prominent driver of the early stages of speciation and helps synthesize two historical controversies regarding the ecology and geography of species formation.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Especiación Genética , Vertebrados , Animales , Geografía , Filogenia , Aislamiento Reproductivo
5.
Mol Ecol ; 31(15): 4050-4066, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35665558

RESUMEN

Phylogeographical studies of the most species-rich region of the planet-the Amazon basin-have repeatedly uncovered genetically distinctive, allopatric lineages within currently named species, but understanding whether such lineages are reproductively isolated species is challenging. Here we harness the power of genome-wide data sets together with detailed phylogeographical sampling to both characterize the number of unique lineages and infer levels of reproductive isolation for three parapatric manakin species that make up the genus Pipra. The mitochondrial and nuclear genomes both support six distinctive lineages. The youngest lineages are now highly admixed with each other across major portions of their geographical ranges with one lineage now extinct in a genomically unadmixed state. In contrast, the oldest sets of lineages-dated to 1.4 million years-exhibit narrow hybrid zones. By fitting demographic models to parapatric lineage pairs we found that levels of gene flow and genomic homogenization decline with increasing evolutionary age. Only lineages descending from the basal node at 1.4 million years ago in the genus experience negligible gene flow, possess genomes resistant to homogenization and are separated by narrow hybrid zones. We conclude that a million years or more were required for Pipra manakins to become reproductively isolated. We suggest the six lineages be reclassified as two or three reproductively isolated species. Our unique approach to quantifying reproductive isolation in parapatric lineages could be applied broadly to other phylogeographical studies and would help determine species classification of the plethora of newly identified lineages in the Amazon basin and other regions.


Asunto(s)
Flujo Génico , Passeriformes , Animales , Especiación Genética , Genómica , Passeriformes/genética , Filogenia , Filogeografía , Aislamiento Reproductivo
6.
Curr Biol ; 32(15): 3389-3397.e8, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728597

RESUMEN

Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km3 of ash and other particles.1 The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand.2 This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock,2,3 devastating habitats and likely causing widespread population extinctions.4-7 An additional devastating super-colossal eruption (>100 km3) of the Taupo supervolcano occurred approximately 1,690 YBP.8 The impacts of such massive but ephemeral natural disasters on contemporary population genetic structure remain underexplored. Here, we combined data for 4,951 SNPs with spatially explicit demographic and coalescent models within an approximate Bayesian computation framework to test the drivers of genetic structure in brown kiwi (Apteryx mantelli). Our results strongly support the importance of eruptions of the Taupo supervolcano in restructuring pre-existing geographic patterns of population differentiation and genetic diversity. Range shifts due to climatic oscillations-a frequent explanation for genetic structure9-are insufficient to fully explain the empirical data. Meanwhile, recent range contraction and fragmentation due to historically documented anthropogenic habitat alteration adds no explanatory power to our models. Our results support a major role for cycles of destruction and post-volcanic recolonization in restructuring the population genomic landscape of brown kiwi and highlight how ancient and ephemeral mega-disasters may leave a lasting legacy on patterns of intraspecific genetic variation.


Asunto(s)
Ecosistema , Estructuras Genéticas , Teorema de Bayes , Variación Genética , Genética de Población , Nueva Zelanda
7.
Proc Biol Sci ; 288(1965): 20212362, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34905706

RESUMEN

Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.


Asunto(s)
Flujo Genético , Endogamia , Variación Genética , Genética de Población , Genoma , Nueva Zelanda , Densidad de Población
8.
Mol Ecol ; 30(19): 4833-4844, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347907

RESUMEN

Geographic contact between sister lineages often occurs near the final stages of speciation, but its role in speciation's completion remains debated. Reproductive isolation may be essentially complete prior to secondary contact. Alternatively, costly interactions between partially reproductively isolated species - such as maladaptive hybridization or competition for resources - may select for divergence, increasing reproductive isolation and driving speciation toward completion. Here, we use coalescent demographic modelling and whole-genome data sets to show that a period of contact and elevated hybridization between sympatric eastern North American populations of two cryptic bird species preceded a major increase in reproductive isolation between these populations within the last 10,000 years. In contrast, substantial introgression continues to the present in a western contact zone where geographic overlap is much narrower and probably of more recent origin. In the sympatric eastern region where reproductive isolation has increased, it is not accompanied by character displacement in key morphometric traits, plumage coloration, or ecological traits. While the precise trait and underlying mechanism driving increased reproductive isolation remains unknown, we discuss several possibilities and outline avenues for future research. Overall, our results highlight how demographic models can reveal the geographic context in which reproductive isolation was completed, and demonstrate how contact can accelerate the final stages of speciation.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Especiación Genética , Passeriformes/genética , Aislamiento Reproductivo , Pájaros Cantores/genética , Simpatría
9.
Mol Ecol ; 30(21): 5517-5529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403554

RESUMEN

Geographically connected species pairs with weakly differentiated genomes could either represent cases of genomic homogenization in progress or of incipient parapatric speciation. Discriminating between these processes is difficult because intermediate stages of either may produce weakly differentiated genomes that diverge at few locations. We used coalescent modelling applied to a genome-wide sample of SNPs to discriminate between speciation with gene flow and genomic homogenization in two phenotypically distinct but genomically weakly diverged species of elevationally replacing Ramphocelus tanagers, forming a hybrid zone in the Andean foothills. We found overwhelming support for a model of genomic homogenization following secondary contact. Simulating under this model suggested that our species pair was differentiated (FST  = 0.30) at secondary contact but that most of the genome has rapidly homogenized during 254 Ky of high gene flow towards the present (FST  = 0.02). Despite extensive genome-wide homogenization, plumage remains distinctive with a narrower than expected geographic cline width, indicating divergent selection on colour. We found two SNPs significantly associated with plumage colour, which retain moderately high FST . We conclude that the majority of the genome has fused, but that divergent selection on select loci probably maintains the geographically structured colour differences between these incipient species.


Asunto(s)
Especiación Genética , Passeriformes , Animales , Flujo Génico , Genoma , Genómica , Passeriformes/genética
10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33963076

RESUMEN

Coexisting (sympatric) pairs of closely related species are often characterized by exaggerated trait differences. This widespread pattern is consistent with adaptation for reduced similarity due to costly interactions (i.e., "character displacement")-a classic hypothesis in evolutionary theory. But it is equally consistent with a community assembly bias in which lineages with greater trait differences are more likely to establish overlapping ranges in the first place (i.e., "species sorting"), as well as with null expectations of trait divergence through time. Few comparative analyses have explicitly modeled these alternatives, and it remains unclear whether trait divergence is a general prerequisite for sympatry or a consequence of interactions between sympatric species. Here, we develop statistical models that allow us to distinguish the signature of these processes based on patterns of trait divergence in closely related lineage pairs. We compare support for each model using a dataset of bill shape differences in 207 pairs of New World terrestrial birds representing 30 avian families. We find that character displacement models are overwhelmingly supported over species sorting and null expectations, indicating that exaggerated bill shape differences in sympatric pairs result from enhanced divergent selection in sympatry. We additionally detect a latitudinal gradient in character displacement, which appears strongest in the tropics. Our analysis implicates costly species interactions as powerful drivers of trait divergence in a major vertebrate fauna. These results help substantiate a long-standing but equivocally supported linchpin of evolutionary theory.


Asunto(s)
Aves/genética , Especiación Genética , Variación Genética , Modelos Genéticos , Simpatría , Animales , Evolución Biológica , Aves/clasificación , Genética de Población/métodos , Fenotipo , Especificidad de la Especie
11.
Conserv Biol ; 35(2): 654-665, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32537779

RESUMEN

Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species- and life-history-related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution-wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black-throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species- and life-history-related variation and correlates of building collisions, information that can help refine collision management.


Correlaciones de las Colisiones de Aves contra Edificios en Tres Países de América del Norte Resumen Las colisiones contra los edificios causan hasta mil millones de fatalidades de aves al año en los Estados Unidos y en Canadá. Sin embargo, los esfuerzos por reducir estas colisiones se beneficiarían con estudios realizados a grandes escalas espaciales en varios sitios de estudio con métodos estandarizados y considerando las variaciones relacionadas a la historia de vida y a la especie y las correlaciones de las colisiones. Abordamos estas necesidades de investigación por medio de una recolección coordinada de datos sobre las colisiones de aves contra edificios en los Estados Unidos (35), Canadá (3) y México (2). Recolectamos todos los cadáveres y los identificamos hasta especie. Después de retirar los registros de cadáveres no identificados, las especies sin estimaciones poblacionales a nivel distribución y las especies con distribuciones traslapadas en menos de diez sitios, nos quedamos con 269 cadáveres de 64 especies para el análisis. Estimamos la vulnerabilidad a colisiones para 40 especies con ≥2 fatalidades con base en la abundancia poblacional para América del Norte, el traslape de su distribución entre los sitios de estudio y el esfuerzo de muestreo. De las diez especies que identificamos como las más vulnerables a las colisiones, algunas han sido identificadas previamente (Setophaga caerulescens), y otras aparecieron por primera vez (Sitta carolinensis), posiblemente debido a que usamos una estrategia de muestreo más estandarizada que en los estudios previos. El tamaño del edificio y el área del vidrio estuvieron asociados positivamente con el número de colisiones para cinco de ocho especies con suficientes observaciones para ser analizadas independientemente. La vegetación alrededor de los edificios influyó sobre las colisiones solamente para una de esas ocho especies Catharus ustulatus). Las historias de vida pronosticaron las colisiones; el número de colisiones fue mayor para las especies migratorias, insectívoras y aquellas que habitan en las zonas boscosas. Nuestros resultados proporcionan una nueva perspectiva hacia las especies más vulnerables a las colisiones contra edificios, lo que las pone en una necesidad potencialmente mayor de atención conservacionista para reducir estas colisiones y de estudio de las variaciones relacionadas con la especie y la historia de vida y las correlaciones de las colisiones contra edificios, información que puede ayudar a refinar el manejo de colisiones.


Asunto(s)
Conservación de los Recursos Naturales , Pájaros Cantores , Animales , Canadá , México , América del Norte , Estados Unidos
12.
Am Nat ; 196(4): 429-442, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32970469

RESUMEN

AbstractEcological differentiation between lineages is widely considered to be an important driver of speciation, but support for this hypothesis is mainly derived from the detailed study of a select set of model species pairs. Mounting evidence from nonmodel taxa, meanwhile, suggests that speciation often occurs with minimal differentiation in ecology or ecomorphology, calling into question the true contribution of divergent adaptation to species richness in nature. To better understand divergent ecological adaptation and its role in speciation generally, researchers require a comparative approach that can distinguish its signature from alternative processes, such as drift and parallel selection, in data sets containing many species pairs. Here we introduce new statistical models of divergent adaptation in the continuous traits of paired lineages. In these models, ecomorphological characters diverge as two lineages adapt toward alternative phenotypic optima following their departure from a common ancestor. The absolute distance between optima measures the extent of divergent selection and provides a basis for interpretation. We encode the models in the new R package diverge and extend them to allow the distance between optima to vary across continuous and categorical variables. We test model performance using simulation and demonstrate model application using published data sets of trait divergence in birds and mammals. Our framework provides the first explicit test for signatures of divergent selection in trait divergence data sets, and it will enable empiricists from a wide range of fields to better understand the dynamics of divergent adaptation and its prevalence in nature beyond just our best-studied model systems.


Asunto(s)
Adaptación Biológica/genética , Especiación Genética , Selección Genética , Animales , Aves/genética , Simulación por Computador , Ecosistema , Mamíferos/genética , Modelos Estadísticos , Filogenia
13.
Evolution ; 74(11): 2512-2525, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32984949

RESUMEN

How species evolve reproductive isolation in the species-rich Amazon basin is poorly understood in vertebrates. Here, we sequenced a reference genome and used a genome-wide sample of SNPs to analyze a hybrid zone between two highly cryptic species of Hypocnemis warbling-antbirds-the Rondonia warbling-antbird (H. ochrogyna) and Spix's warbling-antbird (H. striata)-in a headwater region of southern Amazonia. We found that both species commonly hybridize, producing F1 s and a variety of backcrosses with each species but we detected only one F2 -like hybrid. Patterns of heterozygosity, hybrid index, and interchromosomal linkage disequilibrium in hybrid populations closely match expectations under strong postzygotic isolation. Hybrid zone width (15.4 km) was much narrower than expected (211 km) indicating strong selection against hybrids. A remarkably high degree of concordance in cline centers and widths across loci, and a lack of reduced interspecific Fst between populations close to versus far from the contact zone, suggest that genetic incompatibilities have rendered most of the genome immune to introgression. These results support intrinsic postzygotic isolation as a driver of speciation in a moderately young cryptic species pair from the Amazon and suggest that species richness of the Amazon may be grossly underestimated.


Asunto(s)
Especiación Genética , Aislamiento Reproductivo , Pájaros Cantores/genética , Animales , Brasil , Femenino , Genoma , Hibridación Genética , Masculino , Selección Genética , Secuenciación Completa del Genoma
14.
Genomics ; 112(6): 4552-4560, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32771623

RESUMEN

Antbirds (Thamnophilidae) are a large neotropical family of passerine bird renowned for the ant-following foraging strategies of several members of this clade. The high diversity of antbirds provides ample opportunity for speciation studies, however these studies can be hindered by the lack of an annotated antbird reference genome. In this study, we produced a high-quality annotated reference genome for the Xingu Scale-backed Antbird (Willisornis vidua nigrigula) using 10X Genomics Chromium linked-reads technology. The assembly is 1.09 Gb, with a scaffold N50 of 12.1 Mb and 17,475 annotated protein coding genes. We compare the proteome of W. v. nigrigula to several other passerines, and produce annotations for two additional antbird genomes in order to identify genes under lineage-specific positive selection and gene families with evidence for significant expansions in antbirds. Several of these genes have functions potentially related to the lineage-specific traits of antbirds, including adaptations for thermoregulation in a humid tropical environment.


Asunto(s)
Genoma , Passeriformes/genética , Animales , Proteínas Aviares/genética , Evolución Molecular , Secuencias Repetitivas Esparcidas , Masculino , Familia de Multigenes , Selección Genética , Especificidad de la Especie
15.
Mol Ecol ; 29(7): 1235-1249, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32202354

RESUMEN

Since the early Holocene, fish population genetics in the Laurentian Great Lakes have been shaped by the dual influences of habitat structure and post-glacial dispersal. Riverscape genetics theory predicts that longitudinal habitat corridors and unidirectional downstream water-flow drive the downstream accumulation of genetic diversity, whereas post-glacial dispersal theory predicts that fish genetic diversity should decrease with increasing distance from glacial refugia. This study examines populations of seven native fish species codistributed above and below the 58 m high Niagara Falls - a hypothesized barrier to gene flow in aquatic species. A better understanding of Niagara Falls' role as a barrier to gene flow and dispersal is needed to identify drivers of Great Lakes genetic diversity and guide strategies to limit exotic species invasions. We used genome-wide SNPs and coalescent models to test whether populations are: (a) genetically distinct, consistent with the Niagara Falls barrier hypothesis; (b) more genetically diverse upstream, consistent with post-glacial expansion theory, or downstream, consistent with the riverscape habitat theory; and (c) have migrated either upstream or downstream past Niagara Falls. We found that genetic diversity is consistently greater below Niagara Falls and the falls are an effective barrier to migration, but two species have probably dispersed upstream past the falls after glacial retreat yet before opening of the Welland Canal. Models restricting migration to after opening of the Welland Canal were generally rejected. These results help explain how river habitat features affect aquatic species' genetic diversity and highlight the need to better understand post-glacial dispersal pathways.


Asunto(s)
Peces/genética , Flujo Génico , Genética de Población , Polimorfismo de Nucleótido Simple , Ríos , Distribución Animal , Animales , Ecosistema , Peces/clasificación , Modelos Genéticos
16.
Evolution ; 74(5): 842-858, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31880313

RESUMEN

The incidence of introgression during the diversification process and the timespan following divergence when introgression is possible are poorly understood in the neotropics where high species richness could provide extensive opportunities for genetic exchange. We used thousands of genome-wide SNPs to infer phylogenetic relationships, calculate ages of splitting, and to estimate the timing of introgression in a widespread avian neotropical genus of woodcreepers. Five distinct introgression events were reconstructed involving taxa classified both as subspecies and species including lineages descending from the basal-most split, dated to 7.3 million years ago. Introgression occurred between just a few hundred thousand to about 2.5 million years following divergence, suggesting substantial portions of the genome are capable of introgressing across taxa boundaries during a protracted time window of a few million years following divergence. Despite this protracted time window, we found that the proportion of the genome introgressing (6-11%) declines with the time of introgression following divergence, suggesting that the genome becomes progressively more immune to introgression as reproductive isolation increases.


Asunto(s)
Evolución Biológica , Introgresión Genética , Genoma , Passeriformes/genética , Animales , América Central , México , Aislamiento Reproductivo , América del Sur
17.
PLoS Biol ; 17(10): e3000478, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31639139

RESUMEN

Genetic data indicate differences in speciation rate across latitudes, but underlying causes have been difficult to assess because a critical phase of the speciation process is initiated in allopatry, in which, by definition, individuals from different taxa do not interact. We conducted song playback experiments between 109 related pairs of mostly allopatric bird species or subspecies in Amazonia and North America to compare the rate of evolution of male discrimination of songs. Relative to local controls, the number of flyovers and approach to the speaker were higher in Amazonia. We estimate that responses to songs of relatives are being lost about 6 times more slowly in Amazonia than in North America. The slow loss of response holds even after accounting for differences in song frequency and song length. Amazonian species with year-round territories are losing aggressive responses especially slowly. We suggest the presence of many species and extensive interspecific territoriality favors recognition of songs sung by sympatric heterospecifics, which results in a broader window of recognition and hence an ongoing response to novel similar songs. These aggressive responses should slow the establishment of sympatry between recently diverged forms. If male responses to novel allopatric taxa reflect female responses, then premating reproductive isolation is also evolving more slowly in Amazonia. The findings are consistent with previously demonstrated slower recent rates of expansion of sister taxa into sympatry, slower rates of evolution of traits important for premating isolation, and slower rates of speciation in general in Amazonia than in temperate North America.


Asunto(s)
Especiación Genética , Filogenia , Reproducción/genética , Pájaros Cantores/clasificación , Vocalización Animal/fisiología , Animales , Brasil , Canadá , Femenino , Masculino , Perú , Filogeografía , Pájaros Cantores/genética , Simpatría , Estados Unidos , Grabación en Video
18.
Ecol Lett ; 22(4): 624-633, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30714311

RESUMEN

The importance of ecologically mediated divergent selection in accelerating trait evolution has been poorly studied in the most species-rich biome of the planet, the continental Neotropics. We performed macroevolutionary analyses of trait divergence and diversification rates across closely related pairs of Andean and Amazonian passerine birds, to assess whether the difference in elevational range separating species pairs - a proxy for the degree of ecological divergence - influences the speed of trait evolution and diversification rates. We found that elevational differentiation is associated with faster divergence of song frequency, a trait important for pre-mating isolation, and several morphological traits, which may contribute to extrinsic post-mating isolation. However, elevational differentiation did not increase recent speciation rates, possibly due to early bursts of diversification during the uplift of the eastern Andes followed by a slow-down in speciation rate. Our results suggest that ecological differentiation may speed up trait evolution, but not diversification of Neotropical birds.


Asunto(s)
Altitud , Evolución Biológica , Aves , Ecosistema , Especiación Genética , Animales , Aves/genética , Aves/fisiología , Ecología , Fenotipo , Filogenia
19.
Ecol Evol ; 8(6): 3119-3130, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29607011

RESUMEN

Although some taxa are increasing in number due to active management and predator control, the overall number of kiwi (Apteryx spp.) is declining. Kiwi are cryptic and rare, meaning current monitoring tools, such as call counts, radio telemetry, and surveys using detection dogs are labor-intensive, yield small datasets, and require substantial resources or provide inaccurate estimates of population sizes. A noninvasive genetic approach could help the conservation effort. We optimized a panel of 23 genetic markers (22 autosomal microsatellite loci and an allosomal marker) to discriminate between all species of kiwi and major lineages within species, while simultaneously determining sex. Markers successfully amplified from both fecal and shed feather DNA samples collected in captivity. We found that DNA extraction was more efficient from shed feathers, but DNA quality was greater with feces, although this was sampling dependent. Our microsatellite panel was able to distinguish between contemporary kiwi populations and lineages and provided PI values in the range of 4.3 × 10-5 to 2.0 × 10-19, which in some cases were sufficient for individualization and mark-recapture studies. As such, we have tested a wide-reaching, noninvasive molecular approach that will improve conservation management by providing better parameter estimates associated with population ecology and demographics such as abundance, growth rates, and genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...